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Abstract 22

Gene duplication events are widely recognized as a key factor in the evolution of 23

organismal complexity. Mirroring broader contrasts between adaptation- versus 24

contingency-driven hypotheses for the evolutionary origins of biological complexity, gene 25

duplication outcomes are typically framed in terms of neo- and sub-functionalization 26

scenarios. In the former, duplicated genetic material catalyzes novel functionality; in 27

the latter, it is co-opted to elaborate existing functionality. Examples of both scenarios 28

are widespread in natural history, but practical constraints have limited direct 29

experimental investigation of the relationship between gene duplication and organismal 30

complexity. Using the Avida platform for digital evolution, we show that while 31

increased genome size can promote the emergence of simple adaptive traits, gene 32

duplication uniquely facilitates the de novo evolution of complex adaptive phenotypes. 33

Tracing the ancestry of individual genetic sites, we find that slip duplication of a site 34

increases its subsequent likelihood to code for novel phenotypic traits. We then harness 35

the unique in silico capabilities of our model system to compare evolutionary outcomes 36

across degraded variants of full-fledged gene duplication. This ablative analysis confirms 37

that the observed adaptive potentiation indeed arises from the duplication of existing 38

genetic information. In contrast to purely neutral framings of biological complexity, our 39

results support gene duplication events as a contributing factor in adaptive origins of 40

complex traits. 41

1 Introduction 42

A fundamental objective of evolutionary biology is to understand how complex 43

phenotypic traits and new genetic information originate. Among other factors, theory 44

identifies gene duplication as a major contributor to biological diversity and 45

complexity [1–10]. While comparative genomic studies have provided an increasingly 46

detailed account of duplication events shaping genetic and phenotypic traits in 47

nature [11–17], ambiguities remain in bridging these findings with explicit, 48

process-based models of evolutionary dynamics [18]. In particular, it remains difficult to 49

gauge the importance of adaptive processes like neo-functionalization and dose effects 50

versus contingent processes like sub-functionalization [19–21]. 51

In modern evolutionary biology, experimental approaches have become an important 52

complement to retrospective studies, helping to establish causality in evolutionary 53

dynamics [22,23]. Notable experimental evidence, employing in vivo models, has been 54

established for the adaptive significance of duplicative dose effects within evolving 55

populations [24–26]. Also notable is recent in vivo experimental work by [27], who apply 56

a directed evolution approach using fluorescence-activated cell sorting to compare the 57

rate of adaptive evolution for between E. coli strains differing in copy count for genes 58

encoding fluorescing protein coGFP. Over five rounds of mutagenesis, amplification, and 59

selection, Mihajlovic et al. demonstrate that fluorescence phenotypes in double-copy 60

populations exhibit greater robustness under mutation, but they do not find evidence of 61

faster adaptation in double-copy populations vis-a-vis fluorescence intensity. As the 62

authors highlight, though, achieving the work within their model system required 63

trade-offs in using mutation rates and selection pressures differing significantly from 64

those typical in natural evolution. 65

The theme of evolution of complexity has drawn notable contributions, in particular, 66

from experiments incorporating digital model systems [28]. While lacking in realism and 67

richness compared to work with biological organisms, in silico approaches offer 68

complementary capabilities in supporting principled definitions of complexity [29], fast 69

throughput spanning thousands of generations, and flexible exploration of arbitrary 70
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counterfactuals [30]. In this work, digital systems allow us to systematically enable or 71

disable duplications, supporting direct comparisons of evolutionary outcomes. Insight 72

may also be gained from tracing the fate of duplicated sites, given the availability of 73

exhaustive mutational histories. 74

Fig 1. Genome replication and phenotypic traits in Avida. Self-replicating
computer programs serve as digital model organisms (bottom panel). Organisms comprise virtual
stacks and registers used to store binary values and pointers within a genome of program instructions
used to track instruction execution and copying. Competition to survive and reproduce occurs within a
limited-capacity population. Replication activity can be accelerated by carrying out available
“metabolic” input/output tasks (top panel). These tasks vary in complexity with respect to the number
of NAND operations required to perform them. An organism’s metabolic “phenotype” arises from the
expression of its genetic code. Genetic code copied from parent to offspring may be subject to point
mutations, which change the individual instruction values, and slip mutations, which introduce or
remove many instructions all at once (slip inserts shown as bright green). Reported experiments
compare five alternate variants of slip mutation: A) Slip-duplicate, an exact duplication is inserted
adjacent to the target segment; B) Slip-scramble, shuffled duplication is inserted directly after the
target segment; C) Slip-random, random instructions are inserted directly after the target segment; D)
Slip-NOP, neutral nop-X instructions are inserted directly after the target segment; and E) Slip-scatter,
randomly-drawn instructions are inserted at random throughout the genome.

Here, we investigate the role of adaptive innovation in the relationship between gene 75

duplication and the evolution of complexity using the Avida digital evolution platform. 76

This system allows evolution experiments to be conducted using populations of 77

self-replicating computer programs, operating as digital “model organisms” [31]; owing 78

to heritable variation in replication rate introduced by copy errors, evolution by natural 79

selection unfolds within these populations [32]. Among other early work with Avida, 80

Lenski et al. established a useful framework for quantifying the complexity of 81

phenotypic traits evolved by Avida organisms, by counting the minimum number of 82

necessary substeps to accomplish a task of interest [33]. Applying this lens to a 83

phenotype (“EQU”) comprising a large number of substeps, controlled experiments and 84

step-by-step lineage analyses demonstrated that simple traits could provide building 85

blocks for EQU — and, in fact, amounted to necessary prerequisites for the evolution of 86

complex traits. Other work with Avida has yielded wide-ranging contributions shedding 87

light on selection’s influence on information-theoretic measures of genome 88
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complexity [34], co-evolutionary pressures toward complex phenotypic traits [35], and 89

the abundance of genetic encodings for complex phenotypes [36]. 90

To determine the role of novel adaptations in complexity arising from gene 91

duplication, we independently assessed the influence of slip-duplication mutations on 92

both genetic and phenotypic complexity. We measured genetic complexity by counting 93

the program instructions contributing to an organism’s fitness. For phenotypic 94

complexity, we used the minimal quantity of computational substeps necessary to 95

recreate exhibited behaviors [33]. We find that gene duplication facilitates adaptive 96

evolution of phenotypic traits, with this adaptive benefit appearing exclusively for 97

complex traits. Moreover, we show genome sites encoding complex phenotypic traits to 98

be disproportionately localized within slip-duplicated regions. Genetic complexity, by 99

comparison, did not appreciably respond to gene duplications. Our results therefore 100

contrast with perspectives on biological complexity according lesser significance to the 101

role of adaptive innovation [37–39]. 102

Figure 1 provides a schematic overview of the experiments conducted in our work. 103

All experiments comprised well-mixed populations with a carrying capacity of 3,600 104

Avida organisms. To supply adaptive potential, we adopted an framework developed by 105

Lenski [33] to define a set of nine advantageous phenotypic traits. Each trait 106

corresponds to a possible logical transform on available binary inputs. Under this 107

scheme, organisms producing correct output values for a task benefit by accelerating 108

their genome evaluation (and, thus, also their self-replication), analogously to a 109

metabolic process. Formally, “substeps” necessary to carry out each task may be 110

quantified in terms of the minimum number of NAND operations necessary to carry it 111

out [33].1 As seen in Figure 1, the most complex function (EQU) requires five NAND 112

operations while the simplest (NAND and NOT) require only one. 113

Avida organisms replicate asexually by copying their genome one locus at a time. In 114

addition to a baseline point mutation rate, our experiments modeled gene duplication 115

events using “slip mutation” processes analogous to replication slippage [41]. Under 116

baseline conditions, these slip mutations allow arbitrary segments of program content to 117

be duplicated or excised. As overviewed in Figure 1, we also tested a series of mutation 118

operators isolating particular functional effects of gene duplication, in order to tease 119

apart causality in greater detail. Experiments began with 100-site genomes. To control 120

for the effects of genome length, we also included trials with longer 1,000-site genomes, 121

which was near the upper extreme of genome lengths observed over the course of 122

slip-duplication experiments. 123

2 Results 124

2.1 Gene duplication facilitates adaptive evolution of complex 125

traits 126

In a first set of experiments, we investigated the impact of slip duplications on de novo 127

evolution of adaptive phenotypic traits. Comparing the acquisition of phenotypic traits 128

between slip-duplicate-enabled and baseline treatments, we found slip duplications to 129

yield significantly more evolved adaptive phenotypic traits (two-tailed Mann-Whitney U 130

test, W = 562.5, Bonferroni-adjusted p << 0.0001; Figure 2a). Investigating further, 131

most replicates saw substantial growth in genome length from the initial length of 100 132

sites — in some cases, a tenfold increase, reaching sizes slightly more than 1,000 sites. 133

To test whether adaptive benefit was attributable to genome length, we performed 134

1Computer architecture theory considers NAND as a fundamental basis operation, since all other
logic can be derived from compositions of NAND operations [40].
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(a) slip-duplication (b) ablation treatments (c) lineage history

Fig 2. Treatments preserving slip-duplicated content facilitate adaptive
evolution. Violin plots show number of adaptive traits evolved in final dominant genotypes.
Time series (2c right) shows progression of adaptive phenotypic trait counts along lineages of
final dominant genotypes; color-coding corresponds to violin plots. Asterisk (*) markers
indicate treatments with significantly more adaptive phenotypic traits compared to baseline,
comparison across both 2a and 2b panels. Simulation time unit is “updates,” corresponding to
evaluation of 30 genome sites per organism.

additional experiments incorporating a “long-genome” control treatment initialized 135

using genomes extended to 1,000 sites with neutral inserts. 136

Comparing the long-genome and baseline treatments, we observed increased genome 137

length alone to also significantly boost task acquisition. Disaggregating by task 138

complexity, though, reveals impact of genome length as most prominent in the 139

acquisition of simple tasks. Figure 3 compares acquisition rates for tasks across task 140

complexity classes — with and without slip duplication, including the long-genome 141

control. The long-genome control matched or exceeded the performance of 142

slip-duplication in evolving simple traits with 3 or fewer components. However, slip 143

duplication evolved more complex 4- and 5-component traits within a significantly 144

higher fraction of replicates compared to the long-genome control (Fisher’s exact tests; 145

36/60 vs. 24/60, p < 0.05 [4 components]; 10/30 vs. 2/30, p < 0.03 [5 components]; 146

Figure 3). 147

2.2 Information content of duplications provides adaptive 148

benefit 149

Having observed that slip-duplicate mutations accelerate evolution of adaptive 150

phenotypic traits, we next sought to isolate the aspects of slip duplication contributing 151

to adaptation. For this purpose, we tested four variants of the slip-duplication operator, 152

disabling or replacing a particular aspect of slip duplication (overviewed in Figure 1), as 153

well as an additional “high mutation rate” treatment where single-site insertion/deletion 154

mutations were applied in lieu of slip mutation. 155

As shown in Figure 2, we detected benefits to adaptive evolution only for the 156

follow-up slip-scramble treatment — which randomized sequence order within 157

duplicated regions (two-tailed Mann-Whitney U test; Figures 2a and 2b). All other 158
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Fig 3. Gene duplication boosts adaptive evolution of complex phenotypic
traits. Plots show fraction of replicates exhibiting available phenotypic traits, by generation from
founding ancestor. Panels facet by trait complexity, measured by the minimum number of NAND
operations required to complete the task. Simple tasks (top left) require only one NAND operation.
More complex tasks (bottom right) require up to five NAND operations as shown in Figure 1.
Slip-duplication treatment facilitates significantly faster adaptive evolution than long-genome treatment
for the more complex tasks that require 4 or 5 subcomponents. Error bands give 95% CI, bootstrapped
over 30 replicates per treatment.
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Fig 4. De novo coding sites for complex traits are overrepresented in
slip-duplicated regions. Distributions compare enrichment of coding sites for novel logic-9 traits
in slip-duplicated regions, normalized to neutral expectation. Values greater than 1 indicate that coding
sites of novel traits occur more often in slip-duplicated regions compared to their background frequency.
Each observation is enrichment of coding sites density within slip-duplicated regions at the first
occurence of each observed trait; observation counts are 48, 56, 59, 52, and 20. Significance of deviation
from null expectation median value of 1.0 is indicated with * (p < 0.05), ** (p < 0.01), or ***
(p < 0.001) (one-tailed Wilcoxon signed-rank test).

slip-duplicate variants were indistinguishable or slower-adapting compared with the 159

baseline treatment. 160

Given the efficacy of the slip-scramble treatment in facilitating adaptation, we 161

additionally tested whether phenotypic adaptation differed between the slip-scramble 162

and full-fledged slip-duplicate operators. To prevent issues with multiple comparisons, 163

we ran 100 new trials under both treatments for this test. We found that the 164

slip-duplicate treatment did, in fact, yield higher task counts compared to the 165

slip-scramble treatment (two-tailed Mann-Whitney U test, W = 4305 respectively, 166

Bonferroni-adjusted p < 0.02). As shown in Supplementary Figure 8, full 167

slip-duplication was also associated with significantly larger genome size compared to 168

the slip-scramble treatment — by a factor of approximately 94% (two-tailed 169

Mann-Whitney U test, U = 734, p < 0.001). 170

2.3 Duplicated sites are potentiated for complex traits 171

Thus far, we have established that slip duplication can promote evolution of novel traits, 172

with this effect biasing toward complex traits. We next sought to understand whether 173

duplicated genetic material itself exhibits elevated potential to code for novel traits. 174

To address the question, we assessed the density of coding sites for novel adaptive 175

traits in genome regions that had previously been slip duplicated. Coding sites for these 176

traits arising more frequently than expected by chance in duplicated regions would 177
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suggest that these regions are “potentiated” — that is, possessing latent gene content 178

predisposed to produce a new trait. Figure 4 compares the involvement of sites having 179

undergone slip duplication — versus those that had not — in coding for novel traits. 180

For the simplest tasks, requiring only one NAND component, we found no significant 181

difference in the likelihood of duplicated sites participating in coding regions for new 182

tasks. However, we found significant associations for traits with two or more NAND 183

components (one-sample Wilcoxon signed-rank tests; n = 56, 59, 52, 20 observations). 184

Effect sizes on probability to code for novel traits were 1.6×, 1.6×, 1.2×, and 1.2×, 185

respectively, for 2, 3, 4, and 5 task components. Smaller effect sizes at 4- and 186

5-component tasks may be due to a larger portion of the genome becoming comprised of 187

slip-duplicated sites (Supplementary Figure 10), thus lowering the upper ceiling on 188

deviation from expected. 189

One possible confounding factor in coding site analysis is evolutionary constraint at 190

genome sites involved in organisms’ self-replication loop. These sites are critical to 191

viability, with lethal outcomes when knocked out. We found that these critical sites 192

were less likely to be involved in slip duplication and also less likely to be involved in 193

coding for de novo traits. However, after excluding such fitness-critical sites from 194

analysis, we still found generally similar potentiation signatures from slip duplication 195

(Supplemental Figure 10). 196

In addition to neofunctionalization, gene duplications are also hypothesized to 197

directly facilitate adaptation by directly producing beneficial mutational changes, for 198

example, through dose effects [42]. In line with this possibility, we observed that a 199

substantial fraction of gain-of-function steps on lineages directly coincided with slip 200

duplications — 41 of 174, or 23.6%. However, in these cases, we still found evidence 201

that sites coding for a new trait directly were more likely than chance to have been 202

involved in earlier slip duplications (Supplemental Figure 10). 203

2.4 Genome length drives genetic complexity 204

In a final set of analyses, we broadened our scope to assess consequences of gene 205

duplication on whole-genome architecture with respect to genome robustness, which we 206

defined in terms of sensitivity of fitness to mutation [43]. We quantified robustness by 207

counting the number of “critical” genome sites, where a single-site knockout disrupted 208

replicator viability or one or more adaptive phenotypic traits.2 209

One conventional perspective on gene duplication is vis-a-vis neutral dynamics, 210

wherein copied genetic material reduces brittleness by introducing redundancy [45]. To 211

assess the relevance of this model within our study system, we performed slip-duplicate 212

mutational assays to quantify the baseline effect of slip insertion mutations on 213

robustness. We applied our assay to final-dominant genome lineages evolved with slip 214

duplication, sampling one slip duplication per genome and measuring change in critical 215

site counts between corresponding wildtype and mutated variants. 216

On average, we found that fitness-neutral slip insertions decreased coding site count 217

by 6.8 sites (bootstrapped 95% CI 6.4 to 7.3; median 3% of coding sites). This effect 218

was strongest in genomes with high complexity; for instance, neutral insertion mutations 219

decrease coding site count by 9.2 and 8.3 sites on average in genomes that encode 4- and 220

5-component complexity tasks, respectively (bootstrapped 95% CIs 8.5 to 9.9 and 7.2 to 221

9.3; median 3% and 5% of coding sites). Supplementary Figure 9 presents these results. 222

To assess evolutionary consequences of redundancies introduced by slip-duplication, 223

we next analyzed coding site accumulation within genomes over the course of evolution. 224

Counter to naive expectation, we found that the slip duplication treatment accrued 225

2Although sufficiently representative for our purposes, limitations exist in detecting Avida genome
functionality through single-site knockouts; such an approach can underestimate aspects of genome
sequence complexity involving small effects or redundancy [43,44].
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Fig 5. Gene duplication boosts accumulation of vestigial coding sites.
Generation-by-generation counts of coding sites over evolutionary history. Here, “active” coding sites
refer to genome instructions determined through knockout to contribute to fitness with respect to
self-copy viability or a rewarded phenotypic trait. As shown in panel 5a, gene duplication yields active
coding site counts comparable to long-genome control. Vestigial coding site count, by contrast, reports
the number of sites determined to have contributed to fitness in an ancestor, but are no longer active
coding sites. As shown in panel 5a, vestigial coding site count under slip-duplication treatment outpace
control treatments. Error bands give 95% CI, bootstrapped over 30 replicates per treatment.
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fitness-critical sites at a generation-on-generation rate comparable to the long-genome 226

baseline treatment; Mann-Whitney test, U = 361, p = 0.19). Despite this similarity, 227

however, when measurements were taken inclusive of vestigial coding sites (those which 228

had previously been fitness-critical earlier within a lineage), we found a significantly 229

increased coding site count associated with the slip-duplicate treatment (Mann-Whitney 230

test, U = 630, p < 0.01). Figure 5 compares growth in active versus vestigial coding site 231

counts for baseline, long-genome, and slip-duplication treatment. 232

3 Discussion 233

In this work, we used in silico evolution experiments to investigate how gene 234

duplication influences the evolution of biological complexity. Specifically, we examined 235

the hypothesis that gene duplication acts in shaping adaptive evolution of complex 236

traits. To conduct these experiments, we adapted a framework developed by Lenski et 237

al. [33] to introduce adaptive potential for phenotypic traits across a well-defined 238

spectrum of functional complexity (Figure 1). 239

Overall, our results support the premise that gene duplication can promote the de 240

novo evolution of adaptive traits. Leveraging the unique tractability of our study 241

system, we were able to explore these dynamics in greater detail, providing key insights 242

into: (1) sensitivity of potentiation effects to trait complexity, (2) contributions of 243

sequence information in duplicated material to adaptive outcomes, and (3) a nuanced 244

role of duplications in enhancing short-term robustness while predominantly promoting 245

accumulation of vestigial coding material rather than neutral increases in complexity. 246

3.1 Gene duplication facilitates adaptive evolution of complex 247

traits 248

While we find that gene duplication can facilitate adaptive evolution, we detect this 249

effect only for phenotypic traits with greater functional complexity; adaptive evolution 250

of simpler traits exhibits no benefit beyond the effect of increased genome size alone 251

(Figure 3). Given the compositional nature of trait functionality within our study 252

system [33], this outcome would be consistent with a “building block” model of 253

adaptation, where duplication facilitates discovery of novel medleys of existing 254

components. 255

In broad strokes, adaptive significance of gene duplication within our study system 256

aligns with existing findings across a wide variety of biological taxa and digital models 257

that slip-duplication of genetic material can facilitate evolution of adaptive 258

traits [13,20,46]. Indeed, a striking example of gene duplication potentiating novel 259

adaptation comes from the Long-Term Evolution Experiment in E. coli [47, 48], where a 260

duplication in one population broadened expression of a key citrate transporter to 261

aerobic conditions — resulting in a seven-fold increase in carrying capacity within 262

experimental conditions [49]. Among many other examples in nature [50–56], such 263

observations provide a basis for longstanding connections drawn between gene 264

duplications and adaptive traits, dating as far back as [57]. 265

Present work, however, contrasts with recent directed evolution experiments 266

investigating the effect of gene copy count on adaptation rate [27]. This work finds no 267

effect of gene copy count on phenotypic adaptation rate, comparing single- vs. 268

dual-copy coGFP E. coli strains under selection for increased fluorescence. Several 269

factors may explain this discrepancy, including our use of longer generational timescales 270

and more naturalistic selection coefficients and mutational processes. An contributing 271

aspect may also be the opportunity for more open-ended, multi-gene composition of 272

phenotypic traits in our study system. Importantly, our work broadens the conversation 273
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by providing systematic and controlled experimental evidence supporting the role of 274

gene duplication in adaptive evolution. In particular, our findings suggest that the 275

adaptive benefits of gene duplications may be especially important for the evolution of 276

complex traits. However, future studies will be necessary to determine whether similar 277

constraints and patterns hold in natural systems, where additional mechanisms such as 278

structured regulatory interactions may significantly influence trait evolution. 279

3.2 Sequence information of duplications contributes to 280

adaptive outcomes 281

Our digital evolution study system allowed us to further disentangle which 282

characteristics of gene duplications increase evolutionary potential by imposing variants 283

of the slip mutation operator, isolating individual aspects of duplicative processes 284

(Figure 1). We find that only duplications of existing genetic information — either as-is 285

or in a “scrambled” order — provide adaptive benefit, with those preserving both 286

content and order ultimately performing best. In contrast, slip mutation variants that 287

insert neutral or random genetic material provide no observable adaptive benefit over a 288

baseline control (Figure 2). These results indicate that both the content and structure 289

of duplicated genetic material contribute to facilitating adaptive evolution, beyond the 290

impact of side effects such as an increase in genome size or mutational supply. This 291

finding is consistent with theoretical expectations that gene duplications generate both 292

raw material and combinatorial novelty, enabling subfunctionalization and 293

neofunctionalization [37,57]. 294

Interestingly, unlike our long-genome control, we did not observe an adaptive benefit 295

from the NOP-insert slip-duplication treatment (Figure 2). One possible explanation for 296

this difference is selection against mutational load associated with increased genome 297

length. Indeed, in preliminary experiments we found that deleterious mutational load 298

associated with larger genome size frequently drove extreme genome shrinkage, 299

necessitating a lower bound on genome size. As shown in Supplementary Figure 8, we 300

found genome size to grow significantly larger under full slip-duplication compared to 301

NOP-insert slip-duplication — by a factor of almost 4×. This pattern aligns with 302

established theory that mechanistic factors such as dose effects or epistatic drift are 303

necessary in ensuring preservation of new genome content [19,58–61]. 304

3.3 Duplicated sites are potentiated for complex traits 305

Through step-by-step analysis of lineage histories, we found that duplicated content was 306

disproportionately likely to contribute to novel complex traits (Figure 4). An outsized 307

fraction of coding sites for newly gained adaptive traits could be traced back to 308

duplicated regions, and a substantial fraction of gain-of-function mutations (41 of 174 309

along analyzed lineages) directly coincided with slip duplications. Thus, the adaptive 310

characteristics of slip duplication observed in our system likely result from a combination 311

of direct facilitation and potentiation of subsequent neo-functionalization. This pattern 312

concords with large-scale analyses of biological genomes, which have revealed that a 313

high fraction of genes show evidence of having arisen from duplications [12,13]. As such, 314

our results support long-standing hypotheses about the role of gene duplications in 315

evolutionary innovation and highlight the mechanistic basis for the observed increase in 316

evolvability, particularly for traits requiring multiple interacting components. 317

3.4 Genome length drives genetic complexity 318

Consistent with evidence that duplication-associated redundancy can boost 319

robustness [37], we found that slip insertions with neutral fitness effects tended to 320
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reduce the number of genome sites detectable as a single point of failure for metabolic 321

tasks or reproductive viability (Supplemental Figure 9). Within evolutionary trials in 322

our study system, slip duplication appears to increase the net supply of coding material 323

in the genome available to neutral processes, but does not significantly affect 324

accumulation of genetic brittleness (Figure 5). One possible explanation is that, despite 325

slip duplication boosting redundancy in the short term, mutational erosion and selective 326

pressures against mutational fragility drive both the slip-duplication and long-genome 327

treatments to converge on a similar number of critical sites. On the other hand, 328

observed proliferation of vestigial coding material by gene duplications aligns with 329

adaptive potentiation effects discussed earlier. Given that comparative studies have 330

linked ancient duplication events with subsequent gains in genetic robustness and 331

evolutionary innovation [3], these findings suggest directions for future experimental 332

work investigating how such dynamics unfold over extended timescales to shed light on 333

possible connections to larger-scale evolutionary patterns. 334

4 Materials and Methods 335

4.1 Evolution trials 336

We conducted experiments using a custom version of Avida v2.14.0, extended to 337

support our slip mutation ablation treatments [31]. Supporting software and executable 338

notebooks for this work are freely available under the GNU GPL license, via GitHub at 339

https://github.com/chaynes2019/AvidaGeneDupe/ and archived via Zenodo [62, 63]. 340

Simulation data is archived via the Open Science Framework at 341

https://osf.io/j5s4h/ [64, 65], provided with a CC-By Attribution 4.0 International 342

license. Some components of our experiments were adapted from an earlier version of 343

this work [66]. Code used in this project incorporated numerous pieces of open-source 344

scientific software [67–74]. 345

Population size was configured to the Avida default of 3,600 organisms across all 346

trials, with well-mixed arrangement analogous to chemostat conditions. We configured 347

available metabolic resources consisting of tasks NOT, NAND, OR-NOT, AND, OR, 348

AND-NOT, NOR, XOR, and EQUALS. Identical reward was provided for performing 349

each task and kept consistent throughout trials. Rewards accrued independently for 350

each task, enabling fitness benefits to be compounded by performing multiple tasks. In 351

some analyses, we report a count of adaptive phenotypic traits, ranging from a 352

minimum of 0 (i.e. the organism performs no metabolic tasks and receives no reward) to 353

a maximum of 9 (i.e. the organism performs all 9 available metabolic tasks and receives 354

the maximum reward). Phenotypic traits were also described in terms of minimum 355

required NAND operations as a metric of complexity, as given in Figure 1 [33]. 356

Except where otherwise noted, experiments were seeded with a 100-instruction 357

ancestral self-replicator. In all cases, mutations reducing genome size below 100 358

instructions were disallowed to ensure sufficient raw genetic material to encode 359

phenotypic traits. Run length was 200,000 “updates” across all experiments, a unit of 360

simulation time roughly equivalent to the amount of time required for an organism to 361

execute 30 instructions. This duration was sufficient to observe at least 600 generations 362

of evolution in all trials. 363

4.2 Mutation operators 364

Genomes in our experiments comprised linear sequences of instructions, providing 27 365

operations for basic computations, execution flow control, input and output, and 366

self-replication. This instruction set is Turing complete and syntactically robust, 367
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meaning that any ordering of instructions is syntactically valid. When an organism 368

produced an offspring, we imposed extrinsic mutational operations on the offspring 369

genome: substitution, insertion, deletion, and slip mutations. Copy mutations introduce 370

an erroneous substitution where an instruction is written into the offspring genome 371

instead of the intended instruction. In our experiments, substitutions occurred with a 372

per-site probability of 0.0025 [33]. 373

Insertion mutations, by contrast, insert an arbitrary instruction at random, 374

increasing the length of the offspring’s genome by one. In a similar vein, deletion 375

mutations act by removing a random instruction from the offspring’s genome. In our 376

experiments, each was allowed to occur with a probability of 0.05 per offspring [33]. 377

For the purposes of this study, we augmented Avida with an additional mutation 378

operator: slip mutation, designed to act analogously to gene duplications and deletions 379

caused by replication slippage events [41]. When a slip mutation occurs, two sites in the 380

offspring genome are randomly selected, defining the target segment for the operation. 381

If the first site is upstream of the second, the slip mutation results in an insertion — as 382

if the organism’s replication machinery had slipped backward during replication and 383

copied a segment twice. If the second site is upstream of the first, the slip mutation 384

results in a deletion — as if the organism’s replication machinery skipped over a genetic 385

segment. As implemented, slip-insertions and slip-deletions occur with equal probability; 386

thus, absent selection, this mutational process increases genome length variation but 387

does not introduce an inherent bias on mean genome length. 388

Across trials, we assessed full-fledged slip-duplicate mutation in comparison with 389

four variant mutation operators: 390

1. slip-scramble, where duplicated code was shuffled to test effects of sequence 391

order, 392

2. slip-random, where duplicated code was replaced with random instructions to 393

test effects of sequence content, 394

3. slip-NOP, where duplicated code was replaced with neutral (“no-operation”) 395

instructions to test the effect of neutral increase in genome size, and 396

4. slip-scatter, where duplicated code was dispersed across the genome to test the 397

effect of insertion locality. 398

Figure 1 illustrates example outcomes across surveyed slip-mutation variants. 399

We also applied a high mutation rate control treatment, for which we increased 400

the single instruction insertion/deletion rate to 0.0075, to result in approximately the 401

same number of mutations per divide as under slip mutation. 402

When insertion occurs, all slip mutation operators add a number of instructions 403

equal to the length of the target segment. However, the composition and location of 404

inserted instructions vary according to the slip mutation operator schema. Deletions 405

acted identically across slip mutation variants, except slip-scatter, which randomized 406

deletions uniformly across the genome. Where enabled, slip mutations occurred with 5% 407

probability per divide event. 408

4.3 Experimental design 409

Experiments were conducted in two phases. The first phase tested aggregate differences 410

in evolutionary outcomes between surveyed slip duplication operator variants across 411

runs, while the second focused more heavily on teasing apart evolutionary history and 412

genetic structure within runs. For this reason, first-phase experiments prioritized higher 413

replicate counts, while second-phase experiments prioritized more detailed lineage 414
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tracking of individual genome sites. Replicate count was 100 independent trials for 415

first-phase experiments, and 30 replicates for second-phase experiments. 416

First-phase experiments consisted of six treatments: one baseline treatment with 417

slip-duplication disabled and five experimental treatments corresponding to the five 418

surveyed slip-duplication mutation operators shown in Figure 1. These treatments 419

differed only in the available mutation operators and the rates at which those operators 420

were applied. First-phase data was used for analyses comparing evolved adaptive 421

phenotypic traits between slip mutation operators. 422

For second-phase experiments, we included an additional long-genome baseline 423

treatment to directly test the adaptive role of large genome size associated with 424

slip-duplicators. Genomes in this treatment operated identically to those in the baseline 425

treatment above, except that they were initialized with a 1,000-site ancestor. The 426

1,000-site length was chosen to approximate the upper bound of genome sizes observed 427

in first-phase slip-duplication treatment experiments. Second-phase data was used for 428

analyses of task gain by complexity class (Figure 3), analyses of coding site count 429

trajectories (Figure 5), potentiation analyses (Figures figs. 4 and 10 and analyses of 430

slip-duplication outcome distributions (Figure 9). Phenotypic adaption scores shown in 431

Figure 2 were also derived from second-phase experiments. 432

For experiments incorporating the long-genome baseline control, timecourses of 433

adaptive evolution were compared in terms of generations, rather than in terms of 434

updates (simulation timesteps). This strategy was necessary to account for substantially 435

fewer generations elapsing per thousand updates under the long-genome controls, 436

because of extended copy loop durations. In other experiments, control treatments 437

generally elapsed at least as many generations as the slip-duplication experimental 438

treatment, on account of comparable or shorter genome length. Thus, even when 439

comparing by update in these other experiments, elevated adaptive rates under slip 440

duplication could not be have been caused by more generations elapsing under the 441

slip-duplication treatment. 442

4.4 Lineage analyses 443

Time series assessments of evolutionary history were conducted using the ancestral 444

lineage of the most abundant end-state genotype (“final dominant”). In a postprocessing 445

step, we applied Avida’s “analyze mode” to identify each ancestor’s tasks. 446

For investigations involving the evolutionary history of individual genome sites, we 447

used mutational metadata saved with lineage files to identify corresponding sites 448

between parent and offspring. Due to memory constraints, these analyses were 449

conducted from population save files recorded at update 50,000 rather than the 450

end-state population at update 200,000. This timepoint was chosen to encompass the 451

phase in which the bulk of adaptive evolution had already transpired. 452
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van der Walt, Jarrod Millman, editors. Proceedings of the 9th Python in Science 655

Conference; 2010. p. 56–61. 656

71. Waskom ML. seaborn: statistical data visualization. Journal of Open Source 657

Software. 2021;6(60):3021. doi:10.21105/joss.03021. 658

72. Hunter JD. Matplotlib: A 2D graphics environment. Computing in Science & 659

Engineering. 2007;9(3):90–95. doi:10.1109/mcse.2007.55. 660

73. Moreno MA. mmore500/teeplot; 2023. Available from: 661

https://doi.org/10.5281/zenodo.10440670. 662

74. Team RC. R: A language and environment for statistical computing; 2015. 663

Available from: http://www.R-project.org/. 664

June 27, 2025 19/23

https://doi.org/10.5281/zenodo.14911295
https://www.zenodo.org/
osf.io/j5s4h
https://doi.org/10.5281/zenodo.10440670
http://www.R-project.org/


D
RA
FT

0

50

100

Pe
rc

en
t

Re
pl

ica
te

s

Task Complexity
Min 1 NAND

Task Complexity
Min 2 NAND

0 200 400 600
Generation

Task Complexity
Min 3 NAND

0 200 400 600
Generation

0

50

100
Pe

rc
en

t
Re

pl
ica

te
s

Task Complexity
Min 4 NAND

0 200 400 600
Generation

Task Complexity
Min 5 NAND

Baseline
Long-genome
Slip-duplicate

Fig 6. Mutational supply drives increased adaptation rate for long-genome
control treatment. Results shown from supplemental control experiments using per-genome,
rather than per-site, point mutation processes. In these trials, a count of point mutations was drawn
from a Poisson distribution, to be applied at random positions on the genome. Mean per-genome
mutation rate was configured corresponding with that under per-site mutation for a 100-site genome.
Plots show fraction of replicates exhibiting available phenotypic traits, by generation from founding
ancestor. Panels facet by complexity of a trait, measured by the minimum number of NAND operations
required to complete the task. Simple tasks (top left) require only one NAND operation. More complex
tasks require up to five NAND operations (bottom right). Compared to Figure 3, which shows results
with per-site mutation rates, the relative rate of adaptive evolution in long-genome control is
diminished under Poisson-distributed treatment, where mutation count is not proportional to genome
length. Error bands give 95% CI, bootstrapped over 30 replicates per treatment.

5 Supporting Information 665

June 27, 2025 20/23



D
RA
FT

Base
line

Slip-duplica
te

Lon
g-genom

e

0
1
2
3
4
5
6
7
8
9

Ad
ap

tiv
e

Ph
en

ot
yp

ic 
Tr

ai
ts

0 200 400 600
Generation

0
1
2
3
4
5
6
7
8
9

Ad
ap

tiv
e

Ph
en

ot
yp

ic 
Tr

ai
ts

Baseline
Long-genome
Slip-duplicate

Fig 7. Aggregated adaptive evolution of phenotypic traits for long-genome
control experiments. Violin plots show number of adaptive phenotypic traits evolved in
final dominant genotypes. Time series (2c right) shows progression of adaptive phenotypic trait
count along lineages of final dominant genotypes; color-coding corresponds to violin plots.
Error bands give 95% CI, bootstrapped over 30 replicates per treatment.

Base
line

Slip-duplica
te

200

400

600

800

Ge
no

m
e 

Le
ng

th

High mutat
ion

 ra
te

Slip-sc
att

er

Slip-NOP

Slip-ra
ndom

Slip-sc
ram

ble

(a) genome size

Base
line

Slip-duplica
te

50

100

150

Nu
m

 Ta
sk

Co
di

ng
 S

ite
s

High mutat
ion

 ra
te

Slip-sc
att

er

Slip-NOP

Slip-ra
ndom

Slip-sc
ram

ble

(b) num task coding sites

Fig 8. Genome size and task coding site count outcomes across
slip-duplication ablation treatments. Violin plots show genome size (panel 8b) and
number of task coding sites (panel 8b) in final dominant genotypes. Two-tailed Kruskal-Wallis
tests indicate significant between-treatment variation in both genome size (H = 130,
p << 0.001) and number of task coding sites (H = 135, p << 0.001). After applying
Bonferroni correction for three comparisons, two-tailed Mann-Whitney tests confirm that
genome sizes are significantly smaller under the Slip-NOP treatment compared to Slip-scramble
(124 ± SD 54 vs. 252 ± SD 105 sites, U = 814, p < 0.001) and Slip-duplication treatments (124
± SD 54 vs. 491 ± SD 223 sites, U = 877, p < 0.001); genome sizes are also significantly
smaller under the Slip-scramble treatment compared to Slip-duplication (U = 734, p < 0.001).
Similarly, the number of coding sites for metabolic tasks is significantly smaller under the
Slip-NOP treatment compared to Slip-scramble (54 ± SD 10 vs. 88 ± SD 24 sites, U = 811,
p < 0.001) and Slip-duplication treatments (54 ± SD 10 vs. 107 ± SD 23 sites, U = 894,
p < 0.001); the number of task coding sites is also significantly smaller under the Slip-scramble
treatment compared to Slip-duplication (U = 654, p < 0.01).
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(a) change in coding site count by neutral, beneficial, and deleterious slip duplications; violin plots
show count delta distributions and bar plots show mean count deltas
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Fig 9. Distribution of slip-insertion mutation outcomes. Outcomes were measured
by applying random slip-insertion to genomes sampled from along line-of-descent for final-dominant
genotype over slip-duplication treatment lineage histories for slip-duplicate trials. Notably, insertion
mutations that neither add or lose tasks tend to increase robustness by reducing the number of
task-critical coding sites — particularly for genomes that have acquired complex tasks. Unsurprisingly,
deleterious mutations tend to greatly decrease coding site count and beneficial mutations, which add
new tasks, tend to increase them. Error bars give bootstrapped 95% CI.
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(b) coding site enrichment in non-slip-duplicated
regions
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Fig 10. Slip-duplication potentiation analysis detail. Panel 10a shows
enrichment in slip-duplicated regions for coding sites associated with de novo discovery
of a phenotypic trait, excluding sites assessed by knockout analysis as critical to
self-copy loop viability. Plot composition follows 4, with values greater than 1 indicating
that coding sites of novel traits occur more often in slip-duplicated regions compared to
their background frequency. Significance of deviation from null expectation median
value of 1.0 is indicated with * (p < 0.05), ** (p < 0.01), or *** (p < 0.001) (one-tailed
Wilcoxon signed-rank test). Panels figs. 10b and 10c provide additional context,
showing coding site enrichment values for non-duplicated sites and the overall fraction
of the genome that has been slip-duplicated.
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